
EE304 Project

Matthew Feldman, Jacob Baldwin

June 8, 2016

Abstract

In this project, we created a simple world populated with creatures and food. The goal of
the creatures is to survive as long as possible, which involves eating the most food and avoiding
the most predators. In order to control the decision logic of the creatures, we used Leaky-
Integrate-and-Fire (LIF) neurons in neuromorphic networks. We analyzed the effectiveness of
different neuromorphic parameters, namely number of neurons in the networks and synaptic time
constants of the neurons, to see which creatures perform the best. We also experimented with
the Basal Ganglia node in Nengo to help the creatures make stable, reasonable decisions based
on input stimuli. We found that there is a trade-off between brain complexity and survivability,
as the more complex brains may make better decisions but they do so at the expense of high
energy consumption rates. Similarly, creatures with small synaptic time constants generally
performed better because they were able to make quick, impulsive decisions while they roamed.
However, the creatures with extremely low synaptic time constants and a small number of
neurons behaved more erratically and would probably not have done as well if food were harder
to find in the environment.

1 Introduction

In the University of Florida Museum of Natural History, there used to be an interactive
exhibit that taught the idea of allopatric speciation by allowing visitors to divide a pool of fish
into different groups and watch them evolve separately. The fish swim around looking for food and
prey, while avoiding predators. The exhibit and creatures’ behavior was originally programmed
in Processing by Ian Elsner, a museum exhibit contractor at Richard Lewis Media Group, but we
thought it would be an appropriate place to integrate neuromorphic systems.

The way the game works is that there are creatures roaming around and food spawning
periodically at random. The creatures have antennae sensors to detect what is in front of them and
will seek food and prey but avoid predators. A creature interprets a predator as another creature
that is significantly larger than itself and a prey as one that is significantly smaller. The creatures
shrink continually as they roam, and grow when they eat food or prey. If they shrink too small,
they become ”starved” and their body turns gray and stationary until a creature comes along and
consumes it. Creatures respawn at random after being eaten. Figure 1 shows a screenshot of our
game, along with the diagnostic tools we used to develop it.

1

Figure 1: Screenshot of the game.

We downloaded an old prototype of the code and reimplemented it in Python. The old
version of this code used many nested if-then-else statements to control the creatures’ behavior,
which inherently lacks any sensor noise that real creatures would have, delay between sensing
and decision-making, and the penalty for crunching more data to make a decision. By using a
neuromorphic system, we wanted to be able to explore these tradeoffs with respect to system
architectures that use Leaky-Integrate-and-Fire (LIF) neurons to see how we can create the fittest
creature for this particular task and environment.

We also wanted to experiment with the Basal Ganglia, which is a brain structure that can
take various input stimuli and decide on which action to take such that voluntary behavior can
be performed smoothly. There is a Nengo object that simulates this behavior, which we can plug
directly into our network to make the final call on which action creatures should take.

2 Technical Approach

We started by implementing the game in Python, carefully planting the hooks we need
to drive the creatures with neuromorphic systems. In order to make it easy to plug-and-play
various neuromorphic parameters, such as decision logic, synapse time constants, and ensemble
architectures, we divided the program into various modular components.

First, we created the physics engine that takes care of the environment and ”hard” interactions,
such as bumping into walls, eating food and prey, and determining what item is physically touching
a creature’s sensor. This engine was inspired by the museum exhibit and was a straightforward
translation of the original Processing code into Python so that we could plug in Nengo.

Next, we set up all of the framework to allow the creatures to sense and make decisions with
Nengo objects. This involved creating a sim object but manually updating the stimulus for each
Nengo.node sensor in real time.

2

Then, we set up the animation framework using the matplotlib.animation library. Inside
the animate method of this library, we included all of the physics to update the creatures from
frame to frame, including updates to angular and linear acceleration, total Nengo spike counts,
calorie burning and consumption, and creature decision-making. We also implemented other useful
hooks into the program, such as decoders for Basal Ganglia outputs, neural populations’ stimuli,
and sparkle plots. Throughout a run, the program tracks various events that help us analyze
the performance of the various creatures, such as calories consumed, number of times eaten, and
number of times starved.

Finally, we abstracted away all of the Python details by importing a config file that allows us to
change any property of the simulation, including neuromorphic parameters (number of neurons per
creature, synapse time constants, the Basal Ganglia decision functions, etc) and physical properties
(size of the field, scarcity of food, Ecological efficiency, rate of starvation, geometry of antennae,
etc).

With this framework set up, we were easily able to compare the performance of different
creature configurations. After a simulation is cancelled by the user, a table displaying all of the
events is shown. We also maintained the original version of the program with boolean logic in the
”brain,” which we could use as a reference for what creature behavior is reasonable.

We chose to have a simple network with two nodes that independently accumulate left- and
right- stimuli, and then connect both of these ensembles to a Basal Ganglia node with a rec-
ommendation function. Each antenna node is a 3-dimensional node that reports the properties
Edible_Item, Predator, and Wall. The connection between the accumulator ensembles and the
Basal Ganglia computes recommendation weights based on the desirability of objects detected by
each antenna for each of four actions Turn_Left, Straight, Turn_Right, and Reverse. Figure 2
shows this architecture beside a creature to give a sense of the physical and conceptual geometry.

Figure 2: Nengo architecture alongside screenshot of creature.

3

The Basal Ganglia node in Nengo consists of five ensembles, which were designed to mimic
the way a real Basal Ganglia works. Namely, these populations are:

• Striatal D1 dopamine-receptor neurons (strD1)

• Striatal D2 dopamine-receptor neurons (strD2)

• Subthalamic nucleus (stn)

• Globus pallidus internus / substantia nigra reticulata (gpi)

• Globus pallidus externus (gpe)

Figure 3: Basal Ganglia architecture that is included in the Nengo package.

Figure 3 shows the way these populations are connected. This network simulates both the
direct (excitatory) and indirect (inhibitory) pathways of a biological Basal Ganglia. The advantage
of using this node over a one simple neuron population to sum the utilitiy functions and decide on
an action is that this node offers both nonlinear signal conditioning and action stability. The node
drives the best action at a value of 0 and the rest are forced negative, and the various populations
provide more complex filtering and therefore more stable decisions by forcing the ”winning” action
to high for more time before it is chosen.

Finally, the equations that we decided were reasonable ways of transforming antennae data
into action recommendations is shown below. Each node in an antenna reports either a 1 if the
item was detected and a 0 if not. These values get summed up and are the input array, x, to this
function. We then multiply each element by a pre-configured gain as a form of affinity and aversion
to these objects. We chose to have the creature mainly reverse when there is a predator, turn right
when there is a wall, and seek anything edible. In this snippet, ”food” refers to starved creature
bodies, food, or prey equally.

1 de f f c n l e f t (x) :
2 food = x [0] ∗ f ood ga in
3 predator = x [1] ∗ preda to r ga in
4 wal l = x [2] ∗ wa l l g a i n
5 # Recommendation = [l e f t , s t r a i gh t , r i ght , r e v e r s e]
6 recommendation = [food − predator − wall ,
7 no act ion ,
8 predator + .5∗ wall ,
9 backup gain ∗ predator]

10 re turn recommendation
11

12

4

13 de f f c n r i g h t (x) :
14 food = x [0] ∗ f ood ga in
15 predator = x [1] ∗ preda to r ga in
16 wal l = x [2] ∗ wa l l g a i n
17 # Recommendation = [l e f t , s t r a i gh t , r i ght , r e v e r s e]
18 recommendation = [predator − wall ,
19 no act ion ,
20 food − predator + wall ,
21 backup gain ∗ predator]
22 re turn recommendation

Listing 1: Decision functions

Because the goal of our project is not to perform rigorous calculations or to achieve any
particular level of accuracy, we will measure the quality of our approach in two ways. First, since
our goal was to implement a museum exhibit, we will judge our approach by watching the running
simulation, to see that creatures are behaving more or less as we would expect. Second, since
another goal of our project is to explore trade-offs in neural systems, we would judge our approach
on how well it allows us to vary neural configurations and observe the effects of these changes. Our
results show that our approach achieves these two goals reasonably well.

3 Results

The most important result of our project is the running simulation. The creatures generally
behave as expected. They move towards food and away from predators and walls. Creatures
with smaller numbers of neurons make decisions that change frequently and are more whimsical,
which makes sense, because their calculations will have more variability. These quick-changing
decisions result in a somewhat jerky movement of the creature. Similarly, decreasing the synapse
time constant makes creatures’ decisions fluctuate constantly. Increasing synapse time constants
smooths out this behavior, but if they are made too large, the creatures never react in time to
successfully track targets, so they generally wind up moving in circles. All this behavior makes sense
based on our understanding of neuromorphic systems, so we believe that our system successfully
implements the exhibit using neuromorphic systems, which was the primary goal of our project.

After a simulation has been observed, we looked of the summary data describing how well
each creature did. We performed experiments comparing different numbers of neurons and synapse
time constants. Results of various runs are shown in Figure 4. The fields that we keep track of are:

• Neurons - number of neurons in each antenna ensemble. The total number of neurons for
the creature is therefore 2 ∗Neurons + BasalGanglia

• Synapse Tau - time constant of the connections between each antenna ensemble and the
basal ganglia.

• Survival Time - total time in the simulation each creature spent alive. This number incre-
ments on every frame unless if the creature was recently eaten or is in the starved state.

• Calories Consumed - the amount of food eaten by each creature, including prey that it
ate. This is a measure of how effectively the creature found food.

• Times Eaten / Starved - how often a creature starved to death or was eaten by a larger
creature.

5

Figure 4: Creature summary output for various numbers of neurons and taus

Based on this data, one can make a few conclusions. First, creatures with small numbers of
neurons perform significantly better than creatures with large numbers of neurons. They survive
longer, find more food, get eaten less, and starve less. This presumably happens because the
energy saved by having fewer neurons greatly outweighs the reduced accuracy of calculations.
Second, creatures with small synapse time constants tend to survive better than creatures with
large synapse time constants. This is presumably because they can react more quickly, and this
benefit again outweighs the loss of accuracy caused by less filtering. These results might differ if
the calculations the creatures were performing were more complex. In this simulation, speed and
energy efficiency is much more important than accuracy.

Results like these, and the conclusions based on them, show that our system can be used to
analyze trade-offs in neuromorphic systems based on real life. Many more configurations could be
changed, and the simulation could be modified to model different situations, but our results show
that our project could be used as a foundation for such investigation.

4 Discussion

The original goal was to reimplement the museum exhibit with neuromorphic brains, rather
than boolean brains, but the process of translating it into Python and providing simple hooks
ended up transforming into something that resembled the populor MMO, Agar.io. We received
some feedback that it would have been interesting to interface the Nengo behavior with Javascript
to create an AI that would actually play this game with other people (or AI) online in real-time.

While we eventually figured out how to run Nengo simulations in real-time inside of our
program, it was surprisingly convoluted to do this. Througout the course, we became familiar with
running simulations for fixed durations, and then analyzing the data all at once afterwards, but we
needed to dig into the Nengo source code to figure out how to run in real time.

The original game was intended to only show how creatures can evolve separately when geo-

6

graphically isolated, the game that we created also showed a toy example of the trade-offs between
complexity and survivability. While the real world is many orders of magnitude more complex than
this simulation, we were surprised that there actually seemed to be an optimal number of neurons
in-between the two extremes that created the best creature.

If we had more time, it would have been interesting to change the way the game is played. One
of the problems with testing various neuromorphic parameters was that food was probably too easy
to find without much ”thought” by the creatures, giving the advantage to creatures who wander
around aimlessly because they have too few neurons to properly drive the Basal Ganglia. There
was a wide array of other parameters that we could have played with and that would have greatly
changed our results. For example, we could have added more sensors on the creatures’ antennae,
made the antennae longer, or changed the affinity-aversion parameters to make the creatures more
afraid of predators and more greedy for food. By exploring these parameters, it would be interesting
to watch how the Basal Ganglia grapples with recklessly seeking food versus having a strong phobia
of predators.

Also, by reading further into the Nengo documentation, we realized that the Basal Ganglia
was intended to be used in tandem with a Thalamus. In a biological brain, these two structures
work together to choose actions of high utility and then inhibit all of the other actions. We followed
a Nengo example on using the Basal Ganglia on its own, but it used a simple winner-take-all probe
to extract a decision from the node. If we had used a Thalamus, this node would have taken care
of suppressing all of the actions except for the one with highest utility, and therefore giving the
creatures fully neuromorphic controllers from sensory input to decision output.

Additionally, If we had more time, we would have continued to prune the parameters for all
of the creatures to create a sense of ”offspring” that fuse together the best of both worlds between
competing creatures to continually create better creatures. We also could have used machine
learning techniques on the fly to permit the creatures to change their own parameters each time
they die to let them converge on a more optimal configuration. If we had a version of the program
that we could run on a cluster without animation to collect larger amounts of data more quickly,
this would have helped us draw stronger conclusions and provide more feedback for how to optimize
the creatures.

7

