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Abstract of Thesis Presented to the Department of Electrical and Computer Engineering 
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MAPPING AND LOCALIZATION IMPLEMENTATION FOR NAVIGATION OF AN 

AUTONOMOUS ROBOT 

By 

Matthew Stephen Feldman 

 

December 2014 

 

Chair: John G. Harris 

Major: Electrical Engineering 

 

 

This thesis studies the feasibility of using a vision-based implementation of Simultaneous 

Localization and Mapping (SLAM) for the navigation of an autonomous robot.  Specifically, we 

outline the most important steps in using a forward-facing camera on an autonomous mobile 

robot to acquire the robot’s position in space while accumulating a composite map of the field 

around it.  These steps consist of perspective-transforming the input image to get a bird’s eye 

estimate of the camera’s image, detecting features of interest on this transformed image, 

identifying features that match on the new image and a full map of the course, and finally 

stitching the images together with minimal error. 

The OpenCV library provides much of the support to perform all of these tasks with 

Python, but still presented a few shortcomings that required various algorithms to be custom-

designed.  Furthermore, not all of the build-in functions were compatible with other functions 

used in this project, so a significant amount of work was put in to smoothing the seams and 

building the interfaces to let the individual units communicate with each other.  Random Sample 

Consensus (RANSAC) is one such algorithm that was re-implemented in order to better fit the 

needs of the University of Florida’s IEEE autonomous robot for which this software project was 

intended. 
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CHAPTER 1 

INTRODUCTION 

All of the code and sample images relevant to this report can be found in the Python 

section of the University of Florida’s IEEE 2015 Hardware team’s github, 

https://github.com/ufieeehw/IEEE2015. 

The Machine Intelligence Laboratory (MIL) at the University of Florida will be 

competing in the SoutheastCon 2015 IEEE Autonomous Robot Competition. This competition 

has “the intention of recreating the classical American road trip” by specifying that an 

autonomous robot must successfully navigate a white line and play these four classic road trip 

games1: 

 Play Simon Says 

 Draw “IEEE” on an etch and sketch 

 Rotate one face of a Rubiks Cube 

 Pick up a single playing card 

Figure 1 shows a sample course layout for the competitions.  The rules specify that the 

team of engineers has one minute to set the robot in the starting square and align each of the four 

props as desired in their respective squares.  The robot then has five minutes to complete each of 

the four tasks and cross the 

finish line.  The environment 

will be very noisy and 

contain various flashing 

lights and disturbances from 

spectators that the robots 

must be robust against. Figure 1: Sample course for the 2015 IEEE Autonomous Robot 

competition 

https://github.com/ufieeehw/IEEE2015
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Figure 2 shows the University of Florida’s vehicle for this competition.  The vehicle 

consists of four omnidirectional wheels, a four-axis robotic arm, two parallel grippers and a 

vacuum cup at the end effector, two video cameras, and various other sensors.  To perform the 

high-level computations, Robot Operating System (ROS) is run on top of an Intel NUC x86_64 

Mini PC loaded with Ubuntu 14.04.  

Rather than following the white lines on the 

course to arrive at each of the four tasks, the team 

decided not to follow them at all and drive straight 

towards the various destinations. The amount points 

deducted from driving off of the lines will be more 

than offset by the amount of points gained by 

completing the course more quickly.  In order to assist 

the vehicle in determining its location and planning its 

path, a forward facing camera was decided to provide visual information about the course.  

These images are the basis for implementing Simultaneous Localization and Mapping (SLAM). 

At a later point in time, odometer, GPS, and compass telemetry will be fused with the data 

provided by the SLAM node using Kalman filtering to improve the accuracy of the robot’s 

location.   

Python was chosen instead of C++ for this project.  The IEEE robot is a very large 

project requiring the collaboration of dozens of engineering students.  Python provides a more 

intuitive and simple platform for students with little programming experience to get started right 

away on our project.  In order to keep all of the code consistent, we decided to have every piece 

of software written in Python and adhering to PEP8 standards for comments, format, and style.  

Figure 2: University of Florida's 

vehicle designed for the 2015 IEEE 

Autonomous Robot Competition 
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The OpenCV library in Python provides a wide variety of very convenient functions for working 

with images. 

CHAPTER 2 

TOP-LEVEL APPROACH 

Figure 3 shows the general approach in the SLAM algorithm that was written for MIL’s 

vehicle. After an initialization procedure that sets up the vehicle’s starting location and blank 

map of the field, a series of methods fuses each new image of the course with the entire set of 

previous images.  First, a perspective transform of the camera’s image is performed in order to 

generate a bird’s eye view of the features in the image. Then, the software runs feature detection 

algorithms on this image to extract an array of key points with their respective set of descriptors. 

Next, this array of key points is tested against a larger set of key points already detected in the 

full map to statistically determine which points appear in both the new image and the old map. 

Finally, the affine transform that rotates and translates the new image onto its appropriate 

location on the full map is computed and applied to update the map. 

  The full OpenCV library contains all of the functions and classes required to perform 

each of the main methods show above, such as warpPerspective, getPerspectiveTransform, ORB, 

Figure 3: General SLAM approach 
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BFMatcher, findHomography, and SIFT/SURF.  While some of these built-in methods were 

used in this project, others were replaced with custom methods or modified for various reasons.   

 Scale-Invariant Feature Transform2 (SIFT) and its streamlined counterpart, Speeded-Up 

Robust Features3 (SURF), are two very robust feature detection techniques that would have made 

the code very trivial and straightforward. However, the version of OpenCV that came with ROS 

does not include these functions. OpenCV was originally written in C++, and it was not until 

later that developers wrote a Python wrapper for it.  The minor decrease in speed was justified by 

the portability and simplicity of Python, allowing programmers to focus on the algorithms and 

not be weighed down by the quirks of C++. This version of the Python wrapper for OpenCV 

does not support SURF or SIFT.  Furthermore, these are proprietary techniques and cannot be 

used for free on this robot. 

 FindHomography is another image stitching function that is built into OpenCV that takes 

a list of matched features between two images and computes the perspective transform between 

them.  Feature matching is a very noisy and unreliable technique that often contains many 

erroneous matches, but findHomography uses optimization techniques to filter out the outliers 

and maximize the accuracy of the transform.  Unfortunately, this function often failed when 

undergoing tests because it has extra degrees of freedom that can otherwise be constrained using 

a-priori knowledge about the input data.  This allowed it to converge on optima that are 

physically impossible and clearly unintuitive to a human observer. 

 

CHAPTER 3 

PERSPECTIVE TRANSFORM 

 The first method described in Figure 3 is the “perspective transform.”  Equation 1 shows 

the concept of a perspective transform, T:  
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 𝑇: 𝑉 → 𝑊 Equation 1 

where T is a 3x3 matrix, V = ℝ2 represents 2D Cartesian coordinates on an input image with 

1 as the third element, and W = ℝ3 represents 2D homogeneous coordinates of the 

transformed image. 

 In order to understand the mathematics behind the perspective transform, it is 

important to define the geometry that projects points in 3D space to a 2D image plane4.  

The derivation of a camera’s intrinsic and extrinsic matrices will be outlined with a 

pinhole-camera approximation, and then the perspective transform will be built on top of 

this framework. 

 Figure 4 shows how 

points in 3D Cartesian space get 

mapped to 2D coordinates on a 

pinhole camera’s image plane.  If 

the image plane is a distance f  

from the origin, then we can 

compute u and v by using 

triangle similarities: 

 

 𝑓

𝑍
=

𝑢

𝑋
=

𝑣

𝑌
 

Equation 2 

This rearranges to: 

Figure 4: Diagram showing 3D cartesian space and its 

relationship to homogeneous coordinates.4 
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𝑢 =

𝑓𝑋

𝑍
,    𝑣 =

𝑓𝑌

𝑍
 

Equation 3 

For this reason, it is best to represent coordinates (u, v) in the image plane as 

homogeneous coordinates, (wu, wv, w), so that the above system can be represented with 

the following transform: 

 
𝑃𝑐 = [

𝑢′
𝑣′
𝑤

] = [
𝑓 0 0
0 𝑓 0
0 0 1

] ∗ [
𝑋
𝑌
𝑍

] 
Equation 4 

If the principal axis, as shown in Figure 4, does not pass through the camera’s origin, 

or center of projection, then it is necessary to offset u and v by constant factors of tu and tv, 

respectively.  Furthermore, the skew of the image can be represented by including a Y-

dependent offset for the u coordinate.  In homogeneous coordinates, the resulting 

transform equation is: 

 
𝑃𝑐 = [

𝑢′
𝑣′
𝑤

] = [
𝑓 𝑠 𝑡𝑢

0 𝑓 𝑡𝑣

0 0 1

] ∗ [
𝑋
𝑌
𝑍

] = 𝐾 ∗ 𝑃 
Equation 5 

This 3x3 matrix, K, only depends on the intrinsic properties of the camera, as the origin 

of the system is assumed to be the origin of the 3D space.  However, in this application, the robot 

will be constantly moving through 3D space and therefore the relative location of the image 

plane will be changing.  Therefore, it is necessary to introduce another 3x4 transform matrix, E, 

that takes into account the extrinsic properties of the camera that result from the relationship 

between the sensor and the external world.  The E matrix is formed by first translating the 3D 

space so that the camera origin coincides with the origin of the 3D space, and then rotating about 

this point so that the image plane is perpendicular to the principal axis.  If we let T be a 1x3 
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matrix representing the x, y, and z offsets and R be the 3x3 full rotation matrix, we can represent 

this transform as: 

 

𝑃 = [
𝑋
𝑌
𝑍

] = [𝑅|𝑅𝑇] ∗ [

𝑋′

𝑌′

𝑍′

1

] = 𝐸 ∗ 𝑃′ 

Equation 6 

By combining Equation 5 and Equation 6, we can generate the 3x4 matrix, C, that maps a 

vector in 3D space from a fixed coordinate system to its pixel coordinates, (wu, wv, w), when the 

camera is in any arbitrary location in the 3D space. 

 

𝑃𝑐 = [
𝑢′
𝑣′
𝑤

] = 𝐾 ∗ 𝐸 [

𝑋′

𝑌′

𝑍′

1

] = 𝐶 ∗ 𝑃′ 

Equation 7 

This means that there are 12 unknowns in the camera calibration matrix, C.  Now that C 

has been defined, we can this information to relate the image coordinates of features to their 

respective image coordinates when the camera is at a different location.  When the camera takes 

an image from a different location, the R and T matrices are different.  Let C’ be the calibration 

matrix that computes the 2D homogeneous coordinates on this new image plane: 

 

𝑃𝑜𝑐 = [
𝑢𝑜′

𝑣𝑜′
𝑤𝑜

] = 𝐶′ ∗ 𝑃′ = [
𝑢′
𝑣′
𝑤

] 

Equation 8 

Therefore, there must be a 3x3 matrix, H, that can convert C to C’.  By applying H to 

elements in Pc, it is possible to compute their respective coordinates in an image taken from a 

different perspective, Pc’ as shown in Equation 9. 

 

𝑃𝑜𝑐 = [
𝑢𝑜′

𝑣𝑜′
𝑤𝑜

] = 𝐶′ ∗ 𝑃′ = 𝐻 ∗ 𝐶 ∗ 𝑃′ = 𝐻 ∗ [
𝑢′

𝑣′

𝑤
] = 𝐻 ∗ 𝑃𝑐  

Equation 9 
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It can be shown that the entry in the third row and third column of H is always 1.  

Therefore, the matrix, H, has 8 unknowns.  However, for every pair of points Poc and Pc, there is 

an extra unknown, wo, introduced.  Therefore, it is necessary to define four points on one image 

and their matches on the transformed image to fully solve for the perspective transform matrix, 

H. 

 Fortunately, OpenCV has already worked out the linear algebra to solve for the 8 

unknowns in a perspective transform matrix with the function “getPerspectiveTransform.” Once 

H is returned from this function, there is another function called “warpPerspective” that applies 

this transform to each of the points on an input image to create the transformed image.  This 

function also linearly interpolates intermediate pixel values and shades out pixels outside of the 

original image’s field of view.  Figure 5 shows the result of transforming an image from a 

forward facing camera to a bird’s eye view of a section of the course.  These images were 

generated from a Gazebo simulation of the course. 

 

Figure 5: (a) Original image from forward-facing camera. (b) Bird's eye view of the same section 

by specifying that the four corners of the trapezoid become square. (c) Actual bird’s eye view of 

the course. 
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CHAPTER 4 

FEATURE DETECTION 

Once an image has been transformed to represent a bird’s eye view, features of interest 

must be located and processed in order to greatly simplify the image matching procedure.  

Corners are very important for image matching because they have a well-defined position and 

can be robustly detected5.  They are the location where two edges intersect and can be detected 

by finding frames where the variance in pixel intensity in both the X and Y directions is large.  

For this project, we chose to use the broader category of “points of interest,” as this includes any 

point with high intensity, end of an edge, or other unique features.   

While SIFT and SURF are very efficient and comprehensive algorithms for doing exactly 

this, they were not available to us for this project.  Therefore, it was decided to use the Oriented 

FAST and Rotated BRIEF (ORB) detector that was developed by Ethan Rublee in 20116.  It is 

based on the Features from Accelerated Segment Test (FAST) and Binary Robust Independent 

Elementary Features (BRIEF) algorithms.   

FAST is a very fast technique for determining if a point of interest is actually a corner.  

Other techniques, such as the Harris Corner Detector, take into account 2D statistics and provide 

a score that describes a small square of pixels.  The speed advantage of FAST comes from the 

way that it only considers the 16-pixel circumference of a circle draw around a pixel of interest.  

If there are enough contiguous pixels with “similar” intensities that are significantly different 

from the center pixel, then it decides that the pixel of interest is indeed a corner. 

After key points of interest are located with FAST, it is the job of BRIEF to extract an 

array of descriptors for each of these key points.  It is very difficult to match key points between 

two images without any information about the nature of the corner.  BRIEF computes 
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information about each key point, such as orientation, range of pixel intensity, size, and radius of 

curvature.   

The optional parameter, nFeatures, was set to its default value of 500.  This parameter 

determines how many key points the detector will accumulate before dropping features of lower 

interest with newly detected features.  Another parameter, WTA_K, was set to its default value 

of 2 and represents the number of points used by BRIEF to compute descriptor quantities. 

As shown in Figure 6, there are many erroneous key points that are detected on an image 

that has just been perspective transformed.  One source of error is that pixels that are far in the 

distance in the original image have their rectangular shapes exaggerated when the spaces 

between pixels are interpolated.  Another source of error is that lines and features that lie on the 

edge of the original image appear to be corners when a black mask is applied over “unknown” 

space in the transformed image.  The methods clean_image and _apply_roi were custom-

Figure 6: The red dots represent detected features. (a) Raw image sent through feature detection 

with pixelation corners. (b) Image after low-pass filtering and thresholding. (c) Resulting 

detected features after blue mask is applied. 
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designed to combat both of these issues by smoothing out pixilation corners, thresholding the 

pixel intensities, and masking out key points that lie suspiciously close to the border. 

 

 

CHAPTER 5 

FEATURE MATCHING, LOCALIZATION, AND STITCHING 

  While the previous two methods are extremely important to the SLAM process, the 

feature matching took the majority of the time and effort.  OpenCV provides various esoteric 

built-in functions for matching features, such as Flann Feature Detection, for matching features 

detected by SIFT and SURF.  However, because we are trying to match ORB descriptors, the 

only available option was the Brute Force Matcher. 

 The ultimate goal of feature matching is to determine the transform necessary to 

superimpose and stitch the new image on the full map to get a better representation of the field.  

After feature detection has been applied to the new image from the camera and the full map of 

the course, it is necessary to find the transformation matrix that will place the new image on the 

full map to get a more complete picture.  Because every image used to generate the full map, as 

well as the new image, has already been perspective transformed to get a bird’s eye view of the 

course from the same height, it will only require rotation and translation to stitch the images.  

These two processes can be handled by an affine transformation, as shown in Equation 10. 

 
𝑃𝑐′ = [𝑢′

𝑣′
] = [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓] ∗ [

𝑢
𝑣
1

] = 𝐴 ∗ 𝑃𝑐 
Equation 10 

 The affine matrix, A, has 6 unknowns.  For every pair of points, two equations are 

generated.  Therefore, it is only necessary to define three pairs of points to compute an affine 

transform. 



 

19 

 

 The BFMatcher object allows for various algorithms to be used to match each point in a 

query set (new image) with its lowest-cost neighbor in a train set (full map) using the descriptor 

quantities.  Because WTA_K was set to 2 in the ORB detector, the BFMatcher algorithm was set 

to NORM_HAMMING, as specified by the OpenCV documentation.  The CrossCheck property 

was set to false.  If true, then the ith key point in the query set is stored as a match for its lowest 

cost neighbor, the jth element, in the train set if and only if the best query-set match for the jth 

element is also the ith element.  While setting this check to true may produce more reliable 

results, it is possible that little or no matches will be detected, hence resulting in a SLAM failure.  

Other statistical techniques, described later in this section, will be used to reject erroneous 

matches. 

 The BFMatcher returns an array of DMatch objects.  A DMatch object contains three 

important properties: query index, train index, and the cost of the match.  In order to run analysis 

on the integrity of the returned matches, we extract the pixel coordinates of the two matched key 

points by calling them by index in their key point arrays.  The cost of the match can be used as a 

preliminary filter to decide which matches are “good.” 

 The version of OpenCV used for this project 

did not contain the DrawMatches function, so it 

was custom-built for this project to assist with 

debugging.  As shown in Figure 7, the matches 

that come directly from the BFMatcher cross 

each other and do not demonstrate a consistent 

transform to superimpose or stitch the images.  
Figure 7: Matched features based on 

BFMatcher before filtering. Note how the 

green lines cross 
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This is because the BFMatcher strictly uses the descriptors of key points to determine matches 

and does not consider their geographic locations.    

 FindHomography is a built-in OpenCV function that does exactly this.  It takes a list of 

key points on the query image, an index-matched list of key points in the train image, and a pixel 

threshold.  It uses Random-Sample Consensus (RANSAC) and returns a vector of Booleans that 

masks out key points in both of the arrays that are “outliers,” along with a perspective transform 

matrix that best maps key points on the train image to their matches on the train image.  It does 

this by applying the following algorithm7: 

1. Choose four random matched pairs in the query and train arrays 

2. Compute H, the perspective transform, using these four pairs 

3. Project all points in the query array to their location in the train image using H 

4. Compute point-to-point distance between these mapped points and their matches in the 

train image 

5. Increment the accuracy count for each mapped point that falls within the pixel threshold 

6. Update the “best H” if the accuracy count is greater than the previous “best accuracy 

count” 

7. Return to step 1 and repeat N times 

As previously explained, it is only necessary to apply a 2x3 affine matrix, rather than a 3x3 

perspective transform matrix, to stitch the images.  Unfortunately, there is no built in function 
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that uses RANSAC to compute the 

best affine transform.  Because 

findHomography works with three 

more degrees of freedom than 

necessary, it often converges on an 

incorrect optimum.  It is capable 

of warping the image in a 

mathematically legal way that is 

not physically intuitive. 

 Therefore, the above algorithm was recreated to support RANSAC for computing the 

best affine matrix.  After the affine transform, A, is computed and applied, more low-pass 

filtering is applied to the resulting composite image to prevent future iterations of SLAM from 

detecting corners on the seams.  Furthermore, the 

findHomography algorithm was improved by 

providing support for decision-making in cases when 

the accuracy score ties the previous “best accuracy 

score.”  This is done by keeping track of the net 

accumulated distance of all points that fall within the 

threshold.  Figure 9 shows the matches that are left over after running RANSAC, and Figure 9 

shows the composite map when the images are stitched together.  

 Future work should seek to utilize compass, GPS, and odometer data to limit the degrees 

of freedom available to the affine matrix.  Because the perspective transform already provides 

images from the same vantage point, there are really only three degrees of freedom, rather than 

Figure 8: Matches remaining after applying RANSAC.  Note 

how the green lines are all parallel. 

Figure 9: Stitched composite image 
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six, that need to be computed for the affine transform: x, y, and rotation.  By applying this 

information to constrain the computation, it should be possible to further improve the RANSAC 

algorithm outlined above. 

CHAPTER 6 

CONCLUSION 

 Each of the algorithms outlined in this paper underwent unit testing.  Figure 10 below 

shows the result of combining five camera images into one composite bird’s eye image.  

Furthermore, a variety of images, shown in Appendix A, were used to simulate the input data 

streams for each of the major methods shown in Figure 3.  The perspective transform, which will 

be hardcoded into the vehicle at the time of the competition, was carefully calculated based on an 

image of a calibration square at various camera mounting angles.  These angles were used to 

estimate the optimal mounting angle of the camera that gives enough information about the 

course to detect a fair amount of corners without the view extending so far that features in the 

distance are distorted beyond recognition. 

The feature detection method was tested against a variety of images, such as random 

photographs of buildings, a snapshot of children playing soccer in an open field, and Picasso 

Figure 10: Composite image 
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paintings.  The feature matching method and its affine transform output were tested using the 

outputs generated by feature detection.  By continually detecting features, matching features, and 

comparing the results, these two methods were tuned and tandem until they were robust and 

provided consistent, accurate results.   

While the algorithms individually underwent unit testing, this complete software package 

is only as good as its integration testing, and ultimately, its system testing when integrated with 

the entire ROS environment.  While images from the Gazebo simulation were used to test the 

integrated system, it will be important to use real images to demonstrate that the software works.  

The real world will provide many unexpected issues and obstacles that may break the code in 

unimaginable ways. 

Furthermore, odometer, GPS, compass, and other sensor data will need to be fused 

together in order to create increasingly accurate predictions of the vehicle’s location.  While no 

single ROS node will be able to pinpoint the vehicle’s location with 100% accuracy, Kalman 

filtering must be used to weigh the various location approximations against their respective 

dependability.  In order for this software to be written, it is necessary that the SLAM node 

described in this paper operate as a black box without creating any internal errors for the top-

level software developer. 
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APPENDIX A: Unit Testing Images 

 

 

Figure 11: Image stitching performed on "guy in field" 

 

 

Figure 12: Image stitching 

performed on Picasso-style 

Green Lantern
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