

Simultaneous Localization and Mapping Implementation for Navigation of an Autonomous

Robot

By

MATTHEW STEPHEN FELDMAN

A THESIS PRESENTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING OF THE UNIVERSITY OF FLORIDA IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING WITH

HONORARY SUMMA CUM LAUDE

UNIVERSITY OF FLORIDA

Fall 2014

© 2014 Matthew Stephen Feldman

To my family, who supported me in everything I did.

4

ACKNOWLEDGMENTS

I thank Dr. Scott Banks for his mentorship and support throughout my undergraduate

education. Furthermore, all of my professors at the University of Florida helped to drive me

towards success and becoming a better engineer. I also thank Christine Moore and Joshua

Novick, the Computer Science undergraduates who played a critical role in this project by

collaborating on the software and algorithm development.

5

TABLE OF CONTENTS

 page

ACKNOWLEDGMENTS ...4

ABSTRACT ...7

INTRODUCTION ...8

TOP-LEVEL APPROACH ..10

PERSPECTIVE TRANSFORM ..11

FEATURE DETECTION ..16

FEATURE MATCHING, LOCALIZATION, AND STITCHING ...18

CONCLUSION ..22

LIST OF REFERENCES ...24

APPENDIX A: Unit Testing Images ...25

BIOGRAPHICAL SKETCH ...26

6

TABLE OF FIGURES

 Page

Figure 1: Sample course for the 2015 IEEE Autonomous Robot competition8

Figure 2: University of Florida's vehicle designed for the 2015 IEEE Autonomous Robot

Competition..9

Figure 3: General SLAM approach ..10

Figure 4: Diagram showing 3D cartesian space and its relationship to homogeneous

coordinates. ..12

Figure 5: (a) Original image from forward-facing camera. (b) Bird's eye view of the same

section by specifying that the four corners of the trapezoid become square. (c) Actual

bird’s eye view of the course. ..15

Figure 6: The red dots represent detected features. (a) Raw image sent through feature

detection with pixelation corners. (b) Image after low-pass filtering and thresholding.

(c) Resulting detected features after blue mask is applied. ..17

Figure 7: Matched features based on BFMatcher before filtering. Note how the green lines

cross ...19

Figure 8: Matches remaining after applying RANSAC. Note how the green lines are all

parallel..21

Figure 9: Stitched composite image ...21

Figure 10: Composite image ..22

Figure 11: Image stitching performed on "guy in field" ..25

Figure 12: Image stitching performed on Picasso-style Green Lantern ..25

file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811031
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811032
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811032
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811033
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811034
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811034
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811035
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811035
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811035
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811036
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811036
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811036
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811037
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811037
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811038
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811038
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811039
file:///C:/Users/ruggler/Dropbox/Thesis/Feldman_Thesis_rev3.docx%23_Toc405811040

7

Abstract of Thesis Presented to the Department of Electrical and Computer Engineering

of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Bachelor of Science with Honorary Summa Cum Laude

MAPPING AND LOCALIZATION IMPLEMENTATION FOR NAVIGATION OF AN

AUTONOMOUS ROBOT

By

Matthew Stephen Feldman

December 2014

Chair: John G. Harris

Major: Electrical Engineering

This thesis studies the feasibility of using a vision-based implementation of Simultaneous

Localization and Mapping (SLAM) for the navigation of an autonomous robot. Specifically, we

outline the most important steps in using a forward-facing camera on an autonomous mobile

robot to acquire the robot’s position in space while accumulating a composite map of the field

around it. These steps consist of perspective-transforming the input image to get a bird’s eye

estimate of the camera’s image, detecting features of interest on this transformed image,

identifying features that match on the new image and a full map of the course, and finally

stitching the images together with minimal error.

The OpenCV library provides much of the support to perform all of these tasks with

Python, but still presented a few shortcomings that required various algorithms to be custom-

designed. Furthermore, not all of the build-in functions were compatible with other functions

used in this project, so a significant amount of work was put in to smoothing the seams and

building the interfaces to let the individual units communicate with each other. Random Sample

Consensus (RANSAC) is one such algorithm that was re-implemented in order to better fit the

needs of the University of Florida’s IEEE autonomous robot for which this software project was

intended.

8

CHAPTER 1

INTRODUCTION

All of the code and sample images relevant to this report can be found in the Python

section of the University of Florida’s IEEE 2015 Hardware team’s github,

https://github.com/ufieeehw/IEEE2015.

The Machine Intelligence Laboratory (MIL) at the University of Florida will be

competing in the SoutheastCon 2015 IEEE Autonomous Robot Competition. This competition

has “the intention of recreating the classical American road trip” by specifying that an

autonomous robot must successfully navigate a white line and play these four classic road trip

games1:

 Play Simon Says

 Draw “IEEE” on an etch and sketch

 Rotate one face of a Rubiks Cube

 Pick up a single playing card

Figure 1 shows a sample course layout for the competitions. The rules specify that the

team of engineers has one minute to set the robot in the starting square and align each of the four

props as desired in their respective squares. The robot then has five minutes to complete each of

the four tasks and cross the

finish line. The environment

will be very noisy and

contain various flashing

lights and disturbances from

spectators that the robots

must be robust against. Figure 1: Sample course for the 2015 IEEE Autonomous Robot

competition

https://github.com/ufieeehw/IEEE2015

9

Figure 2 shows the University of Florida’s vehicle for this competition. The vehicle

consists of four omnidirectional wheels, a four-axis robotic arm, two parallel grippers and a

vacuum cup at the end effector, two video cameras, and various other sensors. To perform the

high-level computations, Robot Operating System (ROS) is run on top of an Intel NUC x86_64

Mini PC loaded with Ubuntu 14.04.

Rather than following the white lines on the

course to arrive at each of the four tasks, the team

decided not to follow them at all and drive straight

towards the various destinations. The amount points

deducted from driving off of the lines will be more

than offset by the amount of points gained by

completing the course more quickly. In order to assist

the vehicle in determining its location and planning its

path, a forward facing camera was decided to provide visual information about the course.

These images are the basis for implementing Simultaneous Localization and Mapping (SLAM).

At a later point in time, odometer, GPS, and compass telemetry will be fused with the data

provided by the SLAM node using Kalman filtering to improve the accuracy of the robot’s

location.

Python was chosen instead of C++ for this project. The IEEE robot is a very large

project requiring the collaboration of dozens of engineering students. Python provides a more

intuitive and simple platform for students with little programming experience to get started right

away on our project. In order to keep all of the code consistent, we decided to have every piece

of software written in Python and adhering to PEP8 standards for comments, format, and style.

Figure 2: University of Florida's

vehicle designed for the 2015 IEEE

Autonomous Robot Competition

10

The OpenCV library in Python provides a wide variety of very convenient functions for working

with images.

CHAPTER 2

TOP-LEVEL APPROACH

Figure 3 shows the general approach in the SLAM algorithm that was written for MIL’s

vehicle. After an initialization procedure that sets up the vehicle’s starting location and blank

map of the field, a series of methods fuses each new image of the course with the entire set of

previous images. First, a perspective transform of the camera’s image is performed in order to

generate a bird’s eye view of the features in the image. Then, the software runs feature detection

algorithms on this image to extract an array of key points with their respective set of descriptors.

Next, this array of key points is tested against a larger set of key points already detected in the

full map to statistically determine which points appear in both the new image and the old map.

Finally, the affine transform that rotates and translates the new image onto its appropriate

location on the full map is computed and applied to update the map.

 The full OpenCV library contains all of the functions and classes required to perform

each of the main methods show above, such as warpPerspective, getPerspectiveTransform, ORB,

Figure 3: General SLAM approach

11

BFMatcher, findHomography, and SIFT/SURF. While some of these built-in methods were

used in this project, others were replaced with custom methods or modified for various reasons.

 Scale-Invariant Feature Transform2 (SIFT) and its streamlined counterpart, Speeded-Up

Robust Features3 (SURF), are two very robust feature detection techniques that would have made

the code very trivial and straightforward. However, the version of OpenCV that came with ROS

does not include these functions. OpenCV was originally written in C++, and it was not until

later that developers wrote a Python wrapper for it. The minor decrease in speed was justified by

the portability and simplicity of Python, allowing programmers to focus on the algorithms and

not be weighed down by the quirks of C++. This version of the Python wrapper for OpenCV

does not support SURF or SIFT. Furthermore, these are proprietary techniques and cannot be

used for free on this robot.

 FindHomography is another image stitching function that is built into OpenCV that takes

a list of matched features between two images and computes the perspective transform between

them. Feature matching is a very noisy and unreliable technique that often contains many

erroneous matches, but findHomography uses optimization techniques to filter out the outliers

and maximize the accuracy of the transform. Unfortunately, this function often failed when

undergoing tests because it has extra degrees of freedom that can otherwise be constrained using

a-priori knowledge about the input data. This allowed it to converge on optima that are

physically impossible and clearly unintuitive to a human observer.

CHAPTER 3

PERSPECTIVE TRANSFORM

 The first method described in Figure 3 is the “perspective transform.” Equation 1 shows

the concept of a perspective transform, T:

12

 𝑇: 𝑉 → 𝑊 Equation 1

where T is a 3x3 matrix, V = ℝ2 represents 2D Cartesian coordinates on an input image with

1 as the third element, and W = ℝ3 represents 2D homogeneous coordinates of the

transformed image.

 In order to understand the mathematics behind the perspective transform, it is

important to define the geometry that projects points in 3D space to a 2D image plane4.

The derivation of a camera’s intrinsic and extrinsic matrices will be outlined with a

pinhole-camera approximation, and then the perspective transform will be built on top of

this framework.

 Figure 4 shows how

points in 3D Cartesian space get

mapped to 2D coordinates on a

pinhole camera’s image plane. If

the image plane is a distance f

from the origin, then we can

compute u and v by using

triangle similarities:

 𝑓

𝑍
=

𝑢

𝑋
=

𝑣

𝑌

Equation 2

This rearranges to:

Figure 4: Diagram showing 3D cartesian space and its

relationship to homogeneous coordinates.4

13

𝑢 =

𝑓𝑋

𝑍
, 𝑣 =

𝑓𝑌

𝑍

Equation 3

For this reason, it is best to represent coordinates (u, v) in the image plane as

homogeneous coordinates, (wu, wv, w), so that the above system can be represented with

the following transform:

𝑃𝑐 = [

𝑢′
𝑣′
𝑤

] = [
𝑓 0 0
0 𝑓 0
0 0 1

] ∗ [
𝑋
𝑌
𝑍

]
Equation 4

If the principal axis, as shown in Figure 4, does not pass through the camera’s origin,

or center of projection, then it is necessary to offset u and v by constant factors of tu and tv,

respectively. Furthermore, the skew of the image can be represented by including a Y-

dependent offset for the u coordinate. In homogeneous coordinates, the resulting

transform equation is:

𝑃𝑐 = [

𝑢′
𝑣′
𝑤

] = [
𝑓 𝑠 𝑡𝑢

0 𝑓 𝑡𝑣

0 0 1

] ∗ [
𝑋
𝑌
𝑍

] = 𝐾 ∗ 𝑃
Equation 5

This 3x3 matrix, K, only depends on the intrinsic properties of the camera, as the origin

of the system is assumed to be the origin of the 3D space. However, in this application, the robot

will be constantly moving through 3D space and therefore the relative location of the image

plane will be changing. Therefore, it is necessary to introduce another 3x4 transform matrix, E,

that takes into account the extrinsic properties of the camera that result from the relationship

between the sensor and the external world. The E matrix is formed by first translating the 3D

space so that the camera origin coincides with the origin of the 3D space, and then rotating about

this point so that the image plane is perpendicular to the principal axis. If we let T be a 1x3

14

matrix representing the x, y, and z offsets and R be the 3x3 full rotation matrix, we can represent

this transform as:

𝑃 = [
𝑋
𝑌
𝑍

] = [𝑅|𝑅𝑇] ∗ [

𝑋′

𝑌′

𝑍′

1

] = 𝐸 ∗ 𝑃′

Equation 6

By combining Equation 5 and Equation 6, we can generate the 3x4 matrix, C, that maps a

vector in 3D space from a fixed coordinate system to its pixel coordinates, (wu, wv, w), when the

camera is in any arbitrary location in the 3D space.

𝑃𝑐 = [
𝑢′
𝑣′
𝑤

] = 𝐾 ∗ 𝐸 [

𝑋′

𝑌′

𝑍′

1

] = 𝐶 ∗ 𝑃′

Equation 7

This means that there are 12 unknowns in the camera calibration matrix, C. Now that C

has been defined, we can this information to relate the image coordinates of features to their

respective image coordinates when the camera is at a different location. When the camera takes

an image from a different location, the R and T matrices are different. Let C’ be the calibration

matrix that computes the 2D homogeneous coordinates on this new image plane:

𝑃𝑜𝑐 = [
𝑢𝑜′

𝑣𝑜′
𝑤𝑜

] = 𝐶′ ∗ 𝑃′ = [
𝑢′
𝑣′
𝑤

]

Equation 8

Therefore, there must be a 3x3 matrix, H, that can convert C to C’. By applying H to

elements in Pc, it is possible to compute their respective coordinates in an image taken from a

different perspective, Pc’ as shown in Equation 9.

𝑃𝑜𝑐 = [
𝑢𝑜′

𝑣𝑜′
𝑤𝑜

] = 𝐶′ ∗ 𝑃′ = 𝐻 ∗ 𝐶 ∗ 𝑃′ = 𝐻 ∗ [
𝑢′

𝑣′

𝑤
] = 𝐻 ∗ 𝑃𝑐

Equation 9

15

It can be shown that the entry in the third row and third column of H is always 1.

Therefore, the matrix, H, has 8 unknowns. However, for every pair of points Poc and Pc, there is

an extra unknown, wo, introduced. Therefore, it is necessary to define four points on one image

and their matches on the transformed image to fully solve for the perspective transform matrix,

H.

 Fortunately, OpenCV has already worked out the linear algebra to solve for the 8

unknowns in a perspective transform matrix with the function “getPerspectiveTransform.” Once

H is returned from this function, there is another function called “warpPerspective” that applies

this transform to each of the points on an input image to create the transformed image. This

function also linearly interpolates intermediate pixel values and shades out pixels outside of the

original image’s field of view. Figure 5 shows the result of transforming an image from a

forward facing camera to a bird’s eye view of a section of the course. These images were

generated from a Gazebo simulation of the course.

Figure 5: (a) Original image from forward-facing camera. (b) Bird's eye view of the same section

by specifying that the four corners of the trapezoid become square. (c) Actual bird’s eye view of

the course.

16

CHAPTER 4

FEATURE DETECTION

Once an image has been transformed to represent a bird’s eye view, features of interest

must be located and processed in order to greatly simplify the image matching procedure.

Corners are very important for image matching because they have a well-defined position and

can be robustly detected5. They are the location where two edges intersect and can be detected

by finding frames where the variance in pixel intensity in both the X and Y directions is large.

For this project, we chose to use the broader category of “points of interest,” as this includes any

point with high intensity, end of an edge, or other unique features.

While SIFT and SURF are very efficient and comprehensive algorithms for doing exactly

this, they were not available to us for this project. Therefore, it was decided to use the Oriented

FAST and Rotated BRIEF (ORB) detector that was developed by Ethan Rublee in 20116. It is

based on the Features from Accelerated Segment Test (FAST) and Binary Robust Independent

Elementary Features (BRIEF) algorithms.

FAST is a very fast technique for determining if a point of interest is actually a corner.

Other techniques, such as the Harris Corner Detector, take into account 2D statistics and provide

a score that describes a small square of pixels. The speed advantage of FAST comes from the

way that it only considers the 16-pixel circumference of a circle draw around a pixel of interest.

If there are enough contiguous pixels with “similar” intensities that are significantly different

from the center pixel, then it decides that the pixel of interest is indeed a corner.

After key points of interest are located with FAST, it is the job of BRIEF to extract an

array of descriptors for each of these key points. It is very difficult to match key points between

two images without any information about the nature of the corner. BRIEF computes

17

information about each key point, such as orientation, range of pixel intensity, size, and radius of

curvature.

The optional parameter, nFeatures, was set to its default value of 500. This parameter

determines how many key points the detector will accumulate before dropping features of lower

interest with newly detected features. Another parameter, WTA_K, was set to its default value

of 2 and represents the number of points used by BRIEF to compute descriptor quantities.

As shown in Figure 6, there are many erroneous key points that are detected on an image

that has just been perspective transformed. One source of error is that pixels that are far in the

distance in the original image have their rectangular shapes exaggerated when the spaces

between pixels are interpolated. Another source of error is that lines and features that lie on the

edge of the original image appear to be corners when a black mask is applied over “unknown”

space in the transformed image. The methods clean_image and _apply_roi were custom-

Figure 6: The red dots represent detected features. (a) Raw image sent through feature detection

with pixelation corners. (b) Image after low-pass filtering and thresholding. (c) Resulting

detected features after blue mask is applied.

18

designed to combat both of these issues by smoothing out pixilation corners, thresholding the

pixel intensities, and masking out key points that lie suspiciously close to the border.

CHAPTER 5

FEATURE MATCHING, LOCALIZATION, AND STITCHING

 While the previous two methods are extremely important to the SLAM process, the

feature matching took the majority of the time and effort. OpenCV provides various esoteric

built-in functions for matching features, such as Flann Feature Detection, for matching features

detected by SIFT and SURF. However, because we are trying to match ORB descriptors, the

only available option was the Brute Force Matcher.

 The ultimate goal of feature matching is to determine the transform necessary to

superimpose and stitch the new image on the full map to get a better representation of the field.

After feature detection has been applied to the new image from the camera and the full map of

the course, it is necessary to find the transformation matrix that will place the new image on the

full map to get a more complete picture. Because every image used to generate the full map, as

well as the new image, has already been perspective transformed to get a bird’s eye view of the

course from the same height, it will only require rotation and translation to stitch the images.

These two processes can be handled by an affine transformation, as shown in Equation 10.

𝑃𝑐′ = [𝑢′

𝑣′
] = [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓] ∗ [

𝑢
𝑣
1

] = 𝐴 ∗ 𝑃𝑐
Equation 10

 The affine matrix, A, has 6 unknowns. For every pair of points, two equations are

generated. Therefore, it is only necessary to define three pairs of points to compute an affine

transform.

19

 The BFMatcher object allows for various algorithms to be used to match each point in a

query set (new image) with its lowest-cost neighbor in a train set (full map) using the descriptor

quantities. Because WTA_K was set to 2 in the ORB detector, the BFMatcher algorithm was set

to NORM_HAMMING, as specified by the OpenCV documentation. The CrossCheck property

was set to false. If true, then the ith key point in the query set is stored as a match for its lowest

cost neighbor, the jth element, in the train set if and only if the best query-set match for the jth

element is also the ith element. While setting this check to true may produce more reliable

results, it is possible that little or no matches will be detected, hence resulting in a SLAM failure.

Other statistical techniques, described later in this section, will be used to reject erroneous

matches.

 The BFMatcher returns an array of DMatch objects. A DMatch object contains three

important properties: query index, train index, and the cost of the match. In order to run analysis

on the integrity of the returned matches, we extract the pixel coordinates of the two matched key

points by calling them by index in their key point arrays. The cost of the match can be used as a

preliminary filter to decide which matches are “good.”

 The version of OpenCV used for this project

did not contain the DrawMatches function, so it

was custom-built for this project to assist with

debugging. As shown in Figure 7, the matches

that come directly from the BFMatcher cross

each other and do not demonstrate a consistent

transform to superimpose or stitch the images.
Figure 7: Matched features based on

BFMatcher before filtering. Note how the

green lines cross

20

This is because the BFMatcher strictly uses the descriptors of key points to determine matches

and does not consider their geographic locations.

 FindHomography is a built-in OpenCV function that does exactly this. It takes a list of

key points on the query image, an index-matched list of key points in the train image, and a pixel

threshold. It uses Random-Sample Consensus (RANSAC) and returns a vector of Booleans that

masks out key points in both of the arrays that are “outliers,” along with a perspective transform

matrix that best maps key points on the train image to their matches on the train image. It does

this by applying the following algorithm7:

1. Choose four random matched pairs in the query and train arrays

2. Compute H, the perspective transform, using these four pairs

3. Project all points in the query array to their location in the train image using H

4. Compute point-to-point distance between these mapped points and their matches in the

train image

5. Increment the accuracy count for each mapped point that falls within the pixel threshold

6. Update the “best H” if the accuracy count is greater than the previous “best accuracy

count”

7. Return to step 1 and repeat N times

As previously explained, it is only necessary to apply a 2x3 affine matrix, rather than a 3x3

perspective transform matrix, to stitch the images. Unfortunately, there is no built in function

21

that uses RANSAC to compute the

best affine transform. Because

findHomography works with three

more degrees of freedom than

necessary, it often converges on an

incorrect optimum. It is capable

of warping the image in a

mathematically legal way that is

not physically intuitive.

 Therefore, the above algorithm was recreated to support RANSAC for computing the

best affine matrix. After the affine transform, A, is computed and applied, more low-pass

filtering is applied to the resulting composite image to prevent future iterations of SLAM from

detecting corners on the seams. Furthermore, the

findHomography algorithm was improved by

providing support for decision-making in cases when

the accuracy score ties the previous “best accuracy

score.” This is done by keeping track of the net

accumulated distance of all points that fall within the

threshold. Figure 9 shows the matches that are left over after running RANSAC, and Figure 9

shows the composite map when the images are stitched together.

 Future work should seek to utilize compass, GPS, and odometer data to limit the degrees

of freedom available to the affine matrix. Because the perspective transform already provides

images from the same vantage point, there are really only three degrees of freedom, rather than

Figure 8: Matches remaining after applying RANSAC. Note

how the green lines are all parallel.

Figure 9: Stitched composite image

22

six, that need to be computed for the affine transform: x, y, and rotation. By applying this

information to constrain the computation, it should be possible to further improve the RANSAC

algorithm outlined above.

CHAPTER 6

CONCLUSION

 Each of the algorithms outlined in this paper underwent unit testing. Figure 10 below

shows the result of combining five camera images into one composite bird’s eye image.

Furthermore, a variety of images, shown in Appendix A, were used to simulate the input data

streams for each of the major methods shown in Figure 3. The perspective transform, which will

be hardcoded into the vehicle at the time of the competition, was carefully calculated based on an

image of a calibration square at various camera mounting angles. These angles were used to

estimate the optimal mounting angle of the camera that gives enough information about the

course to detect a fair amount of corners without the view extending so far that features in the

distance are distorted beyond recognition.

The feature detection method was tested against a variety of images, such as random

photographs of buildings, a snapshot of children playing soccer in an open field, and Picasso

Figure 10: Composite image

23

paintings. The feature matching method and its affine transform output were tested using the

outputs generated by feature detection. By continually detecting features, matching features, and

comparing the results, these two methods were tuned and tandem until they were robust and

provided consistent, accurate results.

While the algorithms individually underwent unit testing, this complete software package

is only as good as its integration testing, and ultimately, its system testing when integrated with

the entire ROS environment. While images from the Gazebo simulation were used to test the

integrated system, it will be important to use real images to demonstrate that the software works.

The real world will provide many unexpected issues and obstacles that may break the code in

unimaginable ways.

Furthermore, odometer, GPS, compass, and other sensor data will need to be fused

together in order to create increasingly accurate predictions of the vehicle’s location. While no

single ROS node will be able to pinpoint the vehicle’s location with 100% accuracy, Kalman

filtering must be used to weigh the various location approximations against their respective

dependability. In order for this software to be written, it is necessary that the SLAM node

described in this paper operate as a black box without creating any internal errors for the top-

level software developer.

24

LIST OF REFERENCES

[1] Cabrera, Carlos. "Hardware Competition Southeastcon 2015." Memo. 4 Oct. 2014. Rev 3

[2] Lowe, David G. "Distinctive image features from scale-invariant keypoints."International

journal of computer vision 60.2 (2004): 91-110.

[3] Bay, Herbert, et al. "Speeded-up robust features (SURF)." Computer vision and image

understanding 110.3 (2008): 346-359.

[4] Bebis, George. Geometric Camera Parameters. N.p.: University of Nevada, n.d. PDF.

[5] C. Harris and M. Stephens (1988). "Proceedings of the 4th Alvey Vision Conference". pp.

147–151.

[6] Endres, Felix, et al. "An evaluation of the RGB-D SLAM system." Robotics and Automation

(ICRA), 2012 IEEE International Conference on. IEEE, 2012.

[7] Hoiem, Derek. Image Stitching. N.p.: University of Illinois, Aug. 2011. PPT.

25

APPENDIX A: Unit Testing Images

Figure 11: Image stitching performed on "guy in field"

Figure 12: Image stitching

performed on Picasso-style

Green Lantern

26

BIOGRAPHICAL SKETCH

Matthew Feldman is receiving his B.S. in electrical engineering from the University of

Florida. His primary interests lie in neuromorphic computing, with secondary interests in

machine intelligence and computer vision.

